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Abstract Perispinal injection is a novel emerging method

of drug delivery to the central nervous system (CNS).

Physiological barriers prevent macromolecules from effi-

ciently penetrating into the CNS after systemic adminis-

tration. Perispinal injection is designed to use the

cerebrospinal venous system (CSVS) to enhance delivery

of drugs to the CNS. It delivers a substance into the ana-

tomic area posterior to the ligamentum flavum, an ana-

tomic region drained by the external vertebral venous

plexus (EVVP), a division of the CSVS. Blood within the

EVVP communicates with the deeper venous plexuses of

the CSVS. The anatomical basis for this method originates

in the detailed studies of the CSVS published in 1819 by

the French anatomist Gilbert Breschet. By the turn of the

century, Breschet’s findings were nearly forgotten, until

rediscovered by American anatomist Oscar Batson in 1940.

Batson confirmed the unique, linear, bidirectional and ret-

rograde flow of blood between the spinal and cerebral

divisions of the CSVS, made possible by the absence of

venous valves. Recently, additional supporting evidence

was discovered in the publications of American neurologist

Corning. Analysis suggests that Corning’s famous first use

of cocaine for spinal anesthesia in 1885 was in fact based

on Breschet’s anatomical findings, and accomplished by

perispinal injection. The therapeutic potential of perispinal

injection for CNS disorders is highlighted by the rapid

neurological improvement in patients with otherwise

intractable neuroinflammatory disorders that may ensue

following perispinal etanercept administration. Perispinal

delivery merits intense investigation as a new method of

enhanced delivery of macromolecules to the CNS and

related structures.

Key Points

Perispinal injection is a novel method of drug

delivery to the CNS.

Perispinal injection utilizes the cerebrospinal venous

system (CSVS) to facilitate drug delivery to the CNS

by retrograde venous flow.

Macromolecules delivered posterior to the spine are

absorbed into the CSVS.

1 Introduction

‘‘It seems incredible that a great functional complex

of veins would escape recognition as a system until

1940… In the first four decades of the last century,

our knowledge of the vertebral veins was developed

and then almost forgotten.’’ Batson, 1940 [1].

Physiological barriers, including the blood–brain barrier

(BBB) and the blood–cerebrospinal fluid barrier (BCSFB),

prevent large molecules (those with a molecular weight

[MW] over 600) and many smaller molecules from effi-

ciently penetrating into the central nervous system (CNS)
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after systemic administration [2–4]. Specialized methods of

drug delivery are required to maximize the therapeutic

potential of fusion proteins, monoclonal antibodies, and

other macromolecules for CNS indications [2–5].

One such specialized method, perispinal1 administration,

has been used to deliver the fusion protein etanercept (MW

150,000) to the CNS [6–16]. Perispinal administration

involves delivery into the anatomic region posterior to the

ligamentum flavum and the spinal canal, and is therefore

less complicated than epidural or intrathecal injection [6–

16]. Perispinal administration delivers a substance into the

anatomic region drained by the external vertebral venous

plexus (EVVP), a division of the cerebrospinal venous

system (CSVS) [1, 6–20]. Blood within the EVVP com-

municates with the deeper, valveless, bidirectional venous

plexuses comprising the remainder of the CSVS [1, 6–25].

Bidirectional and retrograde blood flow between the spinal

and cerebral divisions of the CSVS is made possible by the

absence of venous valves within the internal vertebral

venous plexus [1, 19–31]. The anatomical basis for peri-

spinal administration of etanercept has its origins in the

detailed studies of the CSVS published in 1819 and 1829 by

the French anatomist Gilbert Breschet [21, 22] (Figs. 1, 2,

3). Breschet’s findings were nearly forgotten after the turn of

the century, until they were rediscovered and confirmed by

American anatomist Oscar Batson in 1940 [1, 20].

Recently, additional supporting evidence, previously

unrecognized, was discovered in the publications of

American neurologist James Leonard Corning [32–36]. In

1885, the same year that Paul Ehrlich provided the first

experimental evidence of the BBB, Corning reported rapid

onset of spinal anesthesia after perispinal injection of

cocaine ‘between the spinous processes’ (i.e. by inter-

spinous injection), likely as a result of Corning’s famil-

iarity with Breschet’s anatomical findings [32–36].

2 Breschet and the Cerebrospinal Venous System
(CSVS)

‘‘… blood is poured by the dorsi-spinal, the basi-

vertebral and the spinal-medulli veins, and by the

spinal plexus, depositing it to all parts along these

veins….’’ Gilbert Breschet 1819 [21] (Fig. 2)

Gilbert Breschet (1783–1845), Professor of Anatomy at

the University of Paris, surgeon to the Hotel Dieu in Paris,

consulting surgeon to King Louis Phillipe, and member of

the Royal Swedish Academy of Sciences, accurately

detailed the anatomy and physiology of the spinal venous

plexuses and their interconnections and drainage patterns,

forming the basis for the modern conception of the CSVS

[1, 17, 19–23, 25, 30] (Figs. 1, 2, 3). In the second half of

the 19th century, Breschet’s findings regarding the anat-

omy and physiology of the spinal veins were widely known

in Europe and were detailed in major anatomy texts of the

time, including Curveilhier’s Anatomy (1844); volumes III

(1847) and IV (1852) of Todd’s Cyclopaedia of Anatomy

and Physiology (Fig. 4); the first (London 1858) and later

editions of Gray’s Anatomy (Figs. 5, 6); and the 1867 and

later editions of Quain’s Anatomy [37–41].

The first of Breschet’s major works on the spinal veins,

his ‘‘Essai sur les veines du rachis [Essay on the Veins of

the Spine]’’, was published in 1819 [21] (Fig. 2). This work

secured for Breschet the highly sought-after post of

Inspector-General of Anatomy at the Faculty of Medicine

in Paris [21, 38, 42]. At the Faculty of Medicine, Breschet

worked with an esteemed group, including the anatomists

Jean Cruveilhier and Guillaume Dupytren [20, 21, 38, 43].

The treatise is divided into nine sections derived from

Breschet’s ‘‘careful study of the sources, the path, the

connections and the endings of the veins of the spine …

Fig. 1 Cerebrospinal venous system. Detail of plate 5 from Breschet

G, Recherches anatomiques physiologiques et pathologiques sur le

systáeme veineux. Paris: Rouen fráeres; 1829. Courtesy of the Sidney

Tobinick collection

1 ‘Perispinal’ is used herein to refer to drug delivery into the

anatomic area drained by the EVVP posterior (superficial) to the

ligamentum flavum and the spinal canal, distinguished from epidural

and intrathecal drug delivery.
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lengthy, often repeated trials and errors [of specialized

injections] … [and] dissection of parts of this venous

system’’ [21]. Sections of the treatise discuss all of the

interconnected venous plexuses of the spine, specifically

including sections on the EVVP (the ‘dorsi-spinal veins’),

the veins of the spinal cord, and the free communication of

the blood flow within and between these venous plexuses

and the cerebral veins (Figs. 1, 2, 3, 4). The treatise gives

details regarding the specialized injection methods that

Breschet utilized, including using ichtyocolle and ‘‘wax,

soft turpentine, and a body of resin, colored with iron

cyanide (Prussian blue)’’ to meticulously map out the

anatomy, venous blood flow patterns and connectivity of

the veins in and around the spine, the spinal cord, and the

brain [21, 22, 37, 39, 40].

Breschet found that (1) the EVVP drains the anatomic area

posterior to the spine, including the skin andmuscles posterior

to the spine (Figs. 1, 2, 3, 4, 5, 6, 7); (2) veins comprising the

EVVP perforate the ligamentum flavum to join the internal

vertebral venous plexus (Figs. 1, 2, 3, 4, 5, 6, 7); and (3) all of

the spinal venous plexuses, including those of the spinal cord,

were interconnected and that blood within the venous plexu-

ses, constituting the CSVS, intercommunicates [21, 22, 37,

39–41, 44–46] (Figs. 1, 2, 3, 4, 5, 6, 7). Breschet and

colleagues depicted the anatomic continuity of the spinal and

cerebral venous systems (Figs. 1, 2, 3, 4). As Cruveilhier

wrote, cerebral venous drainage could take place via outflow

through the vertebral venous plexus [17, 19–22, 37, 39, 45]

(Figs. 1, 2, 3, 4).2

The accuracy of Breschet’s pioneering descriptions has

been confirmed by a multitude of subsequent anatomic and

clinical studies [1, 17, 19–23, 25, 27, 28, 30, 31, 47, 48]

(review [17]). The First Edition of Gray’s Anatomy (1858)

states:

‘‘The veins of the spine are described and illustrated

from the well-known work of Breschet (Gray 1858,

Preface [39])… . The Dorsi-Spinal Veins [EVVP]

commence by small branches, which receive their

blood from the integument of the back of the spine,

and from the muscles in the vertebral grooves. They

form a complicated net-work, which surrounds the

Fig. 2 Cerebrospinal venous system. Detail of plate from Breschet G,

Essai sur les veines du rachis. Paris: Faculte de Medecine de Paris;

1819. Courtesy of the Sidney Tobinick collection

Fig. 3 Cerebrospinal venous system. Detail of plate III from

Breschet G, Recherches anatomiques physiologiques et pathologiques

sur le systáeme veineux. Paris: Rouen fráeres; 1829. Courtesy of the

Sidney Tobinick collection

2 ‘‘If all the jugular veins were obliterated, the venous circulation in

the head would still continue, and would be carried on through the

spinal veins. I have tied the two external jugular veins in a dog. The

animal showed no sign of cerebral congestion … . In this case, the

circulation was evidently carried on by means of the spinal veins.’’

[37, p. 611].
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spinous processes, laminae, and the transverse and

articular processes of all the vertebrae. At the bases of

the transverse processes, they communicate, by

means of ascending and descending branches, with

the veins surrounding the contiguous vertebrae, and

with the veins in the interior of the spine, in the

intervals between the arches of the vertebrae, perfo-

rating the ligamenta subflava [ligamentum fla-

vum]… .’’ Gray 1858, p. 415 [39].

Today, we owe Breschet a great debt for his detailed and

accurate description of the spinal venous plexuses, long

before the availability of radiologic methods of imaging

Fig. 5 Spinal veins. From Gray, 1858. Figure 222, page 416 from

Gray H and Carter HV, Anatomy, descriptive and surgical. 1st ed.

London: John W. Parker and Son.; 1858; after Breschet (1829)

Fig. 6 Spinal veins. From Gray, 1858. Figure 222, page 416 from

Gray H and Carter HV, Anatomy, descriptive and surgical. 1st ed.

London: John W. Parker and Son.; 1858; after Breschet (1829)

Fig. 4 Cerebrospinal venous system. Detail from Todd RB (ed), The

Cyclopaedia of Anatomy and Physiology. 1847, page 630, Fig. 360;

after Breschet (1829)
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vascular pathways [20–22, 37]. Modern anatomical texts

and reviews, including current editions of Gray’s Anatomy

and Netter’s anatomical atlases, confirm Breschet’s find-

ings [19, 25, 30, 48–52]. Magnetic resonance imaging of

the spine clearly depicts the EVVP in sagittal images of the

spine (Fig. 7).

3 Corning and Perispinal Injection of Cocaine

James Leonard Corning (1855–1923), although born in the

US, received his Doctor of Medicine degree from the

University of Wurzburg in Bavaria, Germany, in 1878,

prior to returning to the US to practice neurology in New

York City [53, 54]. A year after Sigmund Freud and Carl

Kollar published their 1884 papers noting the local anes-

thetic properties of cocaine, Corning began experimenting

with neurological applications of cocaine [33, 55, 56]. He

developed novel methods enabling the effective use of

cocaine as a local anesthetic in lower concentration,

thereby limiting its systemic toxicity [33, 57].

By 1885, Corning’s clinical experience with cocaine and

knowledge of spinal venous anatomy led to the first

demonstration of spinal anesthesia [32–36]. In view of the

place and details of his education, as well as his publications,

Corning’s famous first use of cocaine for spinal anesthesia in

1885 was in fact likely based on Breschet’s findings

regarding spinal venous anatomy and accomplished by

perispinal injection [38, 42, 53, 54].3,4 Corning explained the

scientific rationale in his famous 1885 paper [32]:

‘‘… in order to obtain the most immediate, direct, and

powerful effects upon the cord with a minimum

quantity of a medicinal substance, it is by no means

necessary to bring the substance into direct contact

with the cord; it is not necessary to inject the same

beneath the membranes, as in the case of the frog,

since the effects are entirely due to the absorption of

the fluid by the minute vessels. On the other hand, in

order to obtain these local effects, it is first necessary

to inject the solution in the vicinity of the cord, and

secondly, to select such a spot as will insure the most

direct possible entry of the fluid into the circulation

about the cord … .

Protocol of Experiments … As the introduction of a

hypodermic needle beneath the membranes of the

medulla spinalis is not practicable without removal of

the arches of the vertebrae (on account of the danger

of wounding the cord), I decided to inject the anes-

thetic between the spinous processes of the lower

dorsal vertebrae. I was led to resort to this expedient

from a knowledge of the fact that in the human

subject numerous small veins (venae spinosae) run

down between the spinous processes of the vertebrae,

and, entering the spinal canal, join the more consid-

erable vessels of the plexus spinalis interna. From

these theoretical considerations I reasoned that it was

highly probable that, if the anaesthetic was placed

between the spinous processes of the vertebrae, it (the

anaesthetic) would be rapidly absorbed by the minute

ramifications of the veins referred to, and, being

transported by the blood to the substance of the cord,

would give rise to anesthesia of the sensory and

perhaps also of the motor tracts of the same… .’’

Corning’s injections of cocaine, ‘‘placed between the spi-

nous processes’’ using a hollow needle that he later depicted

(Fig. 8), resulted in spinal anesthesia, as he detailed:

‘‘Experiment I.—This was performed on a young dog

… . I injected … cocaine into the space situated

between the spinous processes of two of the inferior

Fig. 7 External vertebral venous plexus in the cervical subcutaneous

space. Magnetic resonance image. Courtesy of the Sidney Tobinick

Collection

3 Prior to beginning to practice neurology in New York City, Corning

visited and studied in hospitals and other medical institutions in

Vienna, Paris and London; he did so ‘‘… for the purpose of

familiarizing himself with the scientific and clinical methods

prevalent in the various capitals of Europe’’. [53].
4 Breschet was a member of the German medical societies of Bonn,

Erlangen and Heidelberg, understood the German language, and

translated German medical texts into French. His work was well

known in Germany during the second half of the 19th century [42].
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dorsal vertebrae. Five minutes after the injection

there were evidences of marked inco-ordination in

the posterior extremities … . A few minutes later

there was marked evidence of weakness in the hind

legs, but there were no signs whatever of feebleness

in the anterior extremities. I now tested the condition

of sensibility by means of a powerful faradaic battery,

one of the conducting cords of which was attached to

a fine wire brush. When the wire brush was applied to

the hind-legs, there was no reflex action whatever

… .

Experiment II.—This was performed on a man … . I

injected … cocaine into the space situated between

the spinous processes of the eleventh and twelfth

dorsal vertebrae … [there was no effect and I repe-

ated the injection] … . About ten minutes later the

patient complained that his legs ‘felt sleepy’; and, on

making a careful examination with the wire brush, I

found that sensibility was greatly impaired … . The

impairment of sensibility was principally limited to

the lower extremities, the lumbar regions, the penis,

and the scrotum … .’’ Corning, 1885 [32].

The details included in his publications suggest that

Corning utilized perispinal administration of cocaine

delivered by interspinous injection into the interspinous

space, posterior to the spinal canal i.e. superficial (poste-

rior) to the ligamentum flavum [32–34, 36, 58] (see elec-

tronic supplementary material).

In later publications, Corning described a more invasive

method of delivering cocaine, namely intrathecal injection,

which required needle penetration through both the liga-

mentum flavum and the dura mater [35, 36]. Corning dis-

tinguished the clinical results obtained with these two

methods, apparently favoring the perispinal method: ‘‘As a

rule, the paraesthesia and anaesthesia are more irregularly

distributed [with intrathecal injection at L 2-3] than when the

posterior columns of the cord are anaesthetized in themanner

first described [by perispinal injection at T10-11].’’ [36].

Intrathecal delivery of local anesthetics was rapidly

adopted as a method of achieving spinal anesthesia, despite

potential complications related to intrathecal needle

delivery [59–61]. By the early 20th century Corning’s

perispinal method had been misconstrued, particularly in

the US [62, 63].5

4 Batson and the CSVS

Oscar Vivian Batson (1894–1979), Professor of Anatomy at

the University of Pennsylvania, is best known for estab-

lishing the role of the vertebral venous plexuses (‘Batson’s

plexus’) in the dissemination of cancer [1, 20]. Batson’s

finding that the vertebral veins were valveless and commu-

nicated freely with intracranial veins provided an explana-

tion for patterns of cerebral metastasis via the CSVS that had

otherwise been unexplained [1, 20]. In fact, the extent and

significance of Batson’s anatomical and physiological

studies of the vertebral veins have significance well beyond

Batson’s plexus as a route of cancer metastasis [9, 11, 17,

19, 64–66]. Batson re-discovered the work of Breschet and

produced further evidence of the anatomic continuity of the

spinal and cerebral venous plexuses by injection and radi-

ologic experiments [1, 20, 27]. Batson showed that radio-

opaque dye injected in peripheral regions drained by the

vertebral veins could produce visible delivery of dye into the

cerebral veins of human cadavers via the vertebral venous

plexus (see Figs. 5, 6, 7 in Batson [1]). Subsequent animal

and human experiments by Batson and Anderson confirmed

these findings of retrograde venous flow cephalad through

the vertebral venous plexuses into the cerebral venous

sinuses [1, 20, 27]. Batson’s experiments validated Bre-

schet’s findings and established the unique, linear, bidirec-

tional nature of blood flow within the CSVS [1, 17, 20–22,

Fig. 8 Figures from Corning’s 1888 article, Corning JL, XXI—A

Further Contribution on Local Medication of the Spinal Cord, with

Cases. Transactions of the Medical Society of the State of New York

for the Year 1888. 1888: pages 260–269. Figure 1 depicts the solid

needle, 3 inches in length, utilized in the apparatus depicted in Fig. 2.

Figure 2 depicts the spinal canal, the ‘foramen vertebrae’, and the

method Corning utilized to estimate the depth of the posterior border

of same. Figure 3 depicts the hollow needle Corning utilized to

deliver cocaine using the 6.2 ml syringe depicted in Fig. 4

5 Medical historians often give credit to Bier [60] for the first

publication of spinal anesthesia by intrathecal injection. It is unclear if

they are aware that Corning gave an unequivocal description of

intrathecal injection of cocaine in 1894 [35] (pp. 248–254), as well as

in 1897 [36].
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26–28]. The linear, bidirectional blood flow between the

valveless cerebral and spinal divisions of the CSVS contrasts

with the circular nature of blood flow within the systemic

circulation, as established by Harvey centuries earlier [1, 17,

19, 20, 26].

Batson’s finding that dye injected into a peripheral

catchment area of Batson’s plexus could reach the cerebral

veins is supported by clinical and pathological findings [19,

31, 52, 67, 68], including observations of bilateral blurred

vision occurring within 1 min of injection of a 3 mL test

dose of lidocaine meant for epidural analgesia [31]6 :

‘‘We believe her blurred vision was a result of direct

test dose intracranial venous system dissemination via

Batson’s vertebral venous plexus … . Batson’s verte-

bral venous plexus … communicates directly with …
the intracranial venous system.’’ Vallejo et al. [31].

Although Batson made no mention of the use of the

vertebral venous plexus for drug delivery, nor of Corning,

carriage of cocaine through Batson’s plexus to the spinal

cord, after perispinal interspinous injection, provides an

anatomic explanation for the rapid spinal analgesic and

anesthetic effects of cocaine reported by Corning after

perispinal injection [32–34, 69].

5 Perispinal Administration of Etanercept

Clinical experience with perispinal administration of

etanercept began with its use for spinal disorders, first

reported in 2001 [6, 12, 70–72]. The therapeutic potential

of etanercept for the treatment of spinal disorders is today

supported by independent studies, including multiple ran-

domized clinical studies7 [73–76]. After CNS improve-

ments were noted in multiple patients treated for

intractable intervertebral disc-related pain using perispinal

etanercept (PSE; 25 mg) [6, 12, 70], an institutional review

board-approved clinical trial of PSE 25–50 mg weekly

administered open-label in 15 subjects with mild-to-severe

Alzheimer’s disease over a period of 6 months was per-

formed [13].8 Additional clinical experience suggests the

therapeutic potential of PSE for additional forms of

dementia [15, 77]. More recently, PSE has been success-

fully utilized in more than 1000 patients for treatment of

chronic intractable neurological dysfunction after stroke or

brain injury [10, 11, 16, 78]. The scientific rationale sup-

porting the use of etanercept for stroke or brain injury

includes multiple, independent studies and reviews [79–

96]. Rapid neurological improvement, beginning within

minutes of perispinal injection, is characteristically seen

following PSE injection, suggesting novel patterns of

etanercept distribution to the CNS after perispinal admin-

istration [6, 7, 10–16, 65, 70, 77, 78, 97].

For the treatment of brain disorders, Trendelenburg

positioning for several minutes is used immediately after

PSE is administered [10, 11, 13–15]. This head-down tilt

positioning is used to attempt to facilitate delivery of etan-

ercept into the choroid plexus and cerebrospinal fluid (CSF)

after its absorption into theCSVS [9, 11, 65, 98] as it has been

demonstrated in basic sciencemodels that head-down tilt can

increase intracerebral venous pressure and facilitate passage

of plasma proteins into the CSF [18, 99, 100].

In vivo drug distribution after perispinal administration

has been investigated by independent academic scientists

in collaboration with this author [9, 18]. In 2007, enhanced

delivery of radiolabeled diethylene triamine pentaacetic

acid (DTPA) into the cerebral venous system after peri-

spinal (compared with antecubital) injection followed by

Trendelenburg positioning was observed in a human sub-

ject [9]. Following this human result, in collaboration with

scientists at Stanford, the in vivo distribution of radiola-

beled etanercept after perispinal administration and head-

down tilt in a rat was investigated [18]. Positron emission

tomography (PET) imaging suggested rapid penetration of

radiolabeled etanercept into the CSF within the cerebral

ventricles, with accentuation of signal within the choroid

plexus within the ventricles [9, 18] (Fig. 9, transverse

image). Coronal and sagittal PET images acquired at the

same time as the transverse image (Fig. 10) confirm the

pattern of delivery suggested by the transverse image.9

6 Parkinson earlier recognized that ‘‘blood may run freely in either

direction between the orbit and coccyx’’ through Batson’s and

Breschet’s veins [29].
7 The multiple randomized clinical studies of etanercept for the

treatment of disc-related pain and/or radiculopathy include three

clinical trials of epidural etanercept (all with 80 subjects or less; two

0.5–12.5 mg doses 2 weeks apart [73, 74], or one 10 mg dose [75])

and one using a single 10 mg dose of intradiscal etanercept [76].
8 There was significant improvement with treatment, as measured by

all of the primary efficacy variables, including the Mini-Mental State

Examination, the Alzheimer’s Disease Assessment Scale-Cognitive

subscale, and Severe Impairment Battery [13].

9 Additionally, the coronal and sagittal PET images reveal high

signal in the area of perispinal injection in the posterior neck, separate

from and discontinuous with the area of high signal in the choroid

plexus. This signal pattern, with accentuation in the choroid plexus,

suggests cerebrospinal venous delivery of radiolabeled etanercept to

the choroid plexus as the primary event, with secondary delivery to

the CSF via the choroid plexus. These observations merit further

study. Study of primates or large animals utilizing PET imaging is the

preferred model for further investigation, for multiple reasons: it is

exceedingly difficult to deliver etanercept into the interspinous space

in small animals without tearing the small branches of the EVVP

present therein, reducing the reliability and repeatability of this

method in small animals; hydrostatic pressure with Trendelenburg

positioning may be greater in larger animals, resulting in enhanced

delivery into the CSF; and PET imaging has higher resolution than

single-photon emission computed tomography (SPECT) imaging,

thereby it is capable of producing finer anatomical detail.
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In 2014–2015, six basic science studies were published

providing independent support for the therapeutic potential

of etanercept in strokemodels [79, 84, 86, 93, 94, 101]. These

studies join the increasing evidence supporting the thera-

peutic potential of etanercept for multiple brain and spinal

cord disorders [6–16, 18, 24, 64–66, 70–76, 78–81, 83–94,

97, 102–116]. Emerging findings regarding movement of

molecules through the spinal veins, CSF, brain interstitial

fluid, lymphatics and transport of macromolecules through

physiological CNS barriers suggest the existence of previ-

ously unappreciated anatomic pathways that may facilitate

delivery of large molecules into the CSF and the brain after

perispinal delivery [4, 25, 50, 52, 98, 117, 118–123]. These

new findings and accumulating evidence of the central

involvement of neuroinflammatory mechanisms in brain

disorders challenge existing dogma regarding brain physi-

ology, support the rapid neurological effects seen following

PSE administration, and underscore the importance of fur-

ther research exploring CNS delivery of etanercept and other

large molecules after perispinal injection [6, 7, 9–16, 24, 25,

50, 52, 70, 77–85, 87–97, 106, 114, 117, 119–123].

6 Therapeutic Implications, Potential Advantages
and Limitations of Perispinal Delivery

As Corning first demonstrated in 1885, the ability to

selectively deliver a drug to the CNS by perispinal injec-

tion can have significant therapeutic implications [32, 124].

Corning’s first perispinal injection of cocaine produced

spinal anesthesia without the risk of dural puncture [32].10

A century later, emerging evidence suggests that perispinal

delivery has the potential to enable treatment of

intractable CNS disorders with drugs that, if administered

systemically, would have difficulty reaching the CNS in a

therapeutic concentration [6, 7, 9–16, 70, 77]; cf. epidural

or intrathecal delivery11 [12, 73–75, 125–127].

Further research is needed, but current evidence sug-

gests the potential advantages of perispinal delivery

include the following:

1. Less invasive and less complex administration com-

pared with neuraxial (epidural or intrathecal) delivery.

2. Elimination of two of the procedural risks of neuraxial

delivery: post-dural puncture headache and needle

injury to the spinal cord.

3. Suitability for use by the primary care physician in the

primary care setting, without the requirement for

specialized imaging, such as fluoroscopy, to facilitate

needle placement.

4. Rapid and sustained brain effects, suggesting a differ-

ent and more rapid pattern of brain delivery than that

produced by spinal epidural or intrathecal delivery.

5. Delivery of CNS-active drugs, including macro-

molecules, to the CSF and CNS in therapeutically

effective quantity, which drugs would otherwise have

difficulty penetrating the BBB and/or the BCSFB in an

optimal therapeutic amount.

The limitations of perispinal delivery, at present, include

the following:

1. The need for basic science and clinical investigation to

provide additional data regarding drug distribution,

pharmacodynamics, pharmacokinetics, and safety and

efficacy data for each drug candidate delivered by

perispinal administration.

2. The need for funding and completion of randomized,

double-blind, controlled clinical trials (RCT) to

provide the additional data regarding safety and

Fig. 9 Positron emission tomography image, transverse section, of a

living rat brain following perispinal extrathecal administration of

64Cu-DOTA-etanercept, imaged 5–10 min following the administra-

tion of etanercept. Note enhanced signal in the choroid plexus.

Reproduced from Tobinick et al. [18]

10 Corning subsequently utilized perispinal injections of cocaine,

from six to 12 or more per patient, for the treatment of spinal pain

[124].
11 Little is known regarding the extent of drug efflux transporters in

the CSVS vasculature. However, it has been recognized for decades

that epidural delivery is capable of delivering drugs across the thecal

membranes into the CSF in therapeutic concentration without needle

penetration of the dura. Indeed, this selective enhancement of drug

concentration in the CSF surrounding the lumbar cord (with limited

craniad distribution) is the basis for epidural and spinal (intrathecal)

anesthesia [125, 126]. For example, epidural injection of opioids may

produce CSF levels hundreds of times greater than that achieved in

plasma [126]. However, intrathecal delivery into the lumbar CSF will

not necessarily lead to rapid distribution into the brain [127].
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efficacy necessary for regulatory approval of drugs

delivered by perispinal administration.

3. Limited knowledge of the functionality of the BBB

and the BCSFB, as well as the distribution, pharma-

cokinetics, and pharmacodynamics of drugs after

perispinal delivery and limited knowledge of the

extent or function of drug efflux transporters in the

CSVS vasculature.

4. Limited familiarity of the scientific and medical

communities with cerebrospinal venous anatomy and

physiology.

Further research addressing all of the limitations enu-

merated above is needed. At present, RCT data for peri-

spinal delivery for the treatment of brain disorders is not

yet available, although a randomized, double-blind clinical

trial of PSE for the treatment of Alzheimer’s disease is

currently underway at Griffith University in Australia

(Australian New Zealand Clinical Trials Registry ID

ACTRN12612000876897), with an RCT of PSE for post-

stroke neurological dysfunction having received Institu-

tional Review Board approval and scheduled to begin in

2016 (ACTRN12615001377527).

7 Conclusions

Perispinal injection is a novel emerging method of drug

delivery to the CNS. Corning utilized knowledge of this

anatomical pathway to successfully achieve spinal anesthe-

sia by perispinal injection of cocaine in 1885. More than a

century later, the therapeutic potential of perispinal injection

for CNS disorders is highlighted by the rapid neurological

improvement in patients with otherwise intractable neuroin-

flammatory disorders that may ensue following the admin-

istration of PSE. Double-blind, placebo-controlled clinical

trials are necessary to fully characterize the efficacy of

perispinal injection for drug delivery to the CNS and to

obtain regulatory approval. More studies are needed in order

to standardize methods of perispinal delivery. Perispinal

delivery merits intense basic science and clinical investiga-

tion as a new method for enhancing delivery of macro-

molecules to the CNS and related structures.
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